Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Show there are exactly 12 magic labellings of the Magic W using the numbers 1 to 9. Prove that for every labelling with a magic total T there is a corresponding labelling with a magic total 30-T.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

Given the products of diagonally opposite cells - can you complete this Sudoku?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Use the differences to find the solution to this Sudoku.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Four small numbers give the clue to the contents of the four surrounding cells.

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

A pair of Sudoku puzzles that together lead to a complete solution.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Two sudokus in one. Challenge yourself to make the necessary connections.

This Sudoku, based on differences. Using the one clue number can you find the solution?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Two sudokus in one. Challenge yourself to make the necessary connections.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Use the clues about the shaded areas to help solve this sudoku

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

This Sudoku problem consists of a pair of linked standard Suduko puzzles each with some starting digits

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

What is the smallest perfect square that ends with the four digits 9009?

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Solve the equations to identify the clue numbers in this Sudoku problem.

This Sudoku requires you to do some working backwards before working forwards.

The challenge is to find the values of the variables if you are to solve this Sudoku.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?