You may also like

problem icon

N000ughty Thoughts

How many noughts are at the end of these giant numbers?

problem icon

Mod 3

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

problem icon

Common Divisor

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.


Age 14 to 16 Challenge Level:

What is the largest number which, when divided into each of $1905$, $2587$, $3951$, $7020$ and $8725$, leaves the same remainder each time?