If the sides of the triangle in the diagram are 3, 4 and 5, what is the area of the shaded square?

Take any four digit number. Move the first digit to the end and move the rest along. Now add your two numbers. Did you get a multiple of 11?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Can you make sense of these three proofs of Pythagoras' Theorem?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Make some loops out of regular hexagons. What rules can you discover?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

Create some shapes by combining two or more rectangles. What can you say about the areas and perimeters of the shapes you can make?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Think of a number and follow my instructions. Tell me your answer, and I'll tell you what you started with! Can you explain how I know?

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Think of a number... follow the machine's instructions. I know what your number is! Can you explain how I know?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

Find the five distinct digits N, R, I, C and H in the following nomogram

Can you find a rule which relates triangular numbers to square numbers?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you find a rule which connects consecutive triangular numbers?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Show that all pentagonal numbers are one third of a triangular number.

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

The number 27 is special because it is three times the sum of its digits 27 = 3 (2 + 7). Find some two digit numbers that are SEVEN times the sum of their digits (seven-up numbers)?