You may also like

problem icon

There's a Limit

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

problem icon

Not Continued Fractions

Which rational numbers cannot be written in the form x + 1/(y + 1/z) where x, y and z are integers?

problem icon

Fair Shares?

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

Harmonic Triangle

Age 14 to 16 Challenge Level:

This is the start of the harmonic triangle:

\begin{array}{ccccccccccc} & & & & &\frac{1}{1} & & & & & \\ & & & & \frac{1}{2} & & \frac{1}{2} & & & & \\ & & & \frac{1}{3} & &\frac{1}{6} & & \frac{1}{3} & & & \\ & & \frac{1}{4} & &\frac{1}{12} & & \frac{1}{12} & & \frac{1}{4} & & \\ & \frac{1}{5} & & \frac{1}{20} & & \frac{1}{30} & & \frac{1}{20} & & \frac{1}{5} & \\ \frac{1}{6} & & \frac{1}{30} & & \frac{1}{60} & & \frac{1}{60} & & \frac{1}{30} & & \frac{1}{6}\\ & & & & & \ldots& & & & & \end{array}

Each fraction is equal to the sum of the two fractions below it.

Look at the triangle above and check that the rule really does work.

Can you work out the next two rows?

The $n$th row starts with the fraction $\frac{1}{n}$, so the first diagonal goes:

$\frac{1}{1}$, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$...


Take a look at the second diagonal:

$\frac{1}{2}$, $\frac{1}{6}$, $\frac{1}{12}$, $\frac{1}{20}$...

Can you see a pattern?
What fraction will appear in the second position on the nth row?

Can you prove it?

What about the third and fourth diagonals?

 

Click here for a poster of this problem.