#### You may also like ### Rationals Between...

What fractions can you find between the square roots of 65 and 67? ### There's a Limit

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely? ### Not Continued Fractions

Which rational numbers cannot be written in the form x + 1/(y + 1/z) where x, y and z are integers?

# Harmonic Triangle

##### Age 14 to 16Challenge Level

$$\frac{1}{2} = \frac{1}{3} + \frac{1}{6}$$
$$\frac{1}{3} = \frac{1}{4} + \frac{1}{12}$$
$$\frac{1}{12} = \frac{1}{20} + \frac{1}{30}$$

Look at the diagonal lines running from the right down to the left. The fractions in the first one are $\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ and so on.

If $\frac{1}{n}$ is at the end of the nth row, the fraction above it must be $\frac{1}{n-1}$ and the fraction below it must be $\frac{1}{n+1}$.

Have a look at the second diagonal (the one formed by taking the second number in each row: it starts $\frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \frac{1}{20}$.

Can you find a pattern for these numbers so that you can work them out easily (without having to subtract fractions)?

Can you explain why the pattern works?