Skip to main content
### Number and algebra

### Geometry and measure

### Probability and statistics

### Working mathematically

### For younger learners

### Advanced mathematics

# Summing Consecutive Numbers

## You may also like

### Is There a Theorem?

Links to the University of Cambridge website
Links to the NRICH website Home page

Nurturing young mathematicians: teacher webinars

30 April (Primary), 1 May (Secondary)

30 April (Primary), 1 May (Secondary)

Or search by topic

Age 11 to 14

Challenge Level

*Summing Consecutive Numbers printable worksheet*

Watch the video below to see how numbers can be expressed as sums of consecutive numbers.

Investigate the questions posed in the video and any other questions you come up with.

Can you draw any conclusions?

Can you support your conclusions with convincing arguments or proofs?

If you are unable to view the video, click below to reveal an alternative version of the problem.

Charlie has been thinking about sums of consecutive numbers. Here is part of his working out:

Alison looked over Charlie's shoulder:

"I wonder if we could write **every** number as the sum of consecutive numbers?"

"Some numbers can be written in more than one way! I wonder which ones?"

"$9$, $12$ and $15$ can all be written using three consecutive numbers. I wonder if all multiples of $3$ can be written in this way?"

"Maybe you could write the multiples of $4$ if you used four consecutive numbers..."

Choose some of the questions above, or pose some questions of your own, and try to answer them.

Can you support your conclusions with convincing arguments or proofs?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?