Crack this code which depends on taking pairs of letters and using two simultaneous relations and modulus arithmetic to encode the message.
If x, y and z are real numbers such that: x + y + z = 5 and xy + yz + zx = 3. What is the largest value that any of the numbers can have?
Solve the system of equations to find the values of x, y and z: xy/(x+y)=1/2, yz/(y+z)=1/3, zx/(z+x)=1/7
![]() |
Find all the triples of numbers $a$, $b$, $c$ such that each one of them plus the product of the other two is always $2$. |