Skip to main content
### Number and algebra

### Geometry and measure

### Probability and statistics

### Working mathematically

### For younger learners

### Advanced mathematics

# Unit Interval

## You may also like

### Shades of Fermat's Last Theorem

### Two Cubes

Links to the University of Cambridge website
Links to the NRICH website Home page

Nurturing young mathematicians: teacher webinars

30 April (Primary), 1 May (Secondary)

30 April (Primary), 1 May (Secondary)

Or search by topic

Age 14 to 18

Challenge Level

Take any two numbers between $0$ and $1$. Prove that the sum of the numbers is always less than one plus their product.

That is, if $0< x< 1$ and $0< y< 1$ then prove

$$x+y< 1+xy$$

The familiar Pythagorean 3-4-5 triple gives one solution to (x-1)^n + x^n = (x+1)^n so what about other solutions for x an integer and n= 2, 3, 4 or 5?

Two cubes, each with integral side lengths, have a combined volume equal to the total of the lengths of their edges. How big are the cubes? [If you find a result by 'trial and error' you'll need to prove you have found all possible solutions.]