Some diagrammatic 'proofs' of algebraic identities and inequalities.
Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .
Mark a point P inside a closed curve. Is it always possible to find two points that lie on the curve, such that P is the mid point of the line joining these two points?
Show that all pentagonal numbers are one third of a triangular number.
Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.
Use the diagram to investigate the classical Pythagorean means.
Can you find a rule which connects consecutive triangular numbers?
Your data is a set of positive numbers. What is the maximum value that the standard deviation can take?
Can you find a rule which relates triangular numbers to square numbers?
A 10x10x10 cube is made from 27 2x2 cubes with corridors between them. Find the shortest route from one corner to the opposite corner.
A ribbon runs around a box so that it makes a complete loop with two parallel pieces of ribbon on the top. How long will the ribbon be?
Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?
A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?
There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .
Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .
A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?
The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?
The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?
This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?
Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.
Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .
Mike and Monisha meet at the race track, which is 400m round. Just to make a point, Mike runs anticlockwise whilst Monisha runs clockwise. Where will they meet on their way around and will they ever. . . .
The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.
Find the point whose sum of distances from the vertices (corners) of a given triangle is a minimum.
Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.
I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?
What's the largest volume of box you can make from a square of paper?
Discover a way to sum square numbers by building cuboids from small cubes. Can you picture how the sequence will grow?
Two boats travel up and down a lake. Can you picture where they will cross if you know how fast each boat is travelling?
Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.
Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?
Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?
To avoid losing think of another very well known game where the patterns of play are similar.
A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .
How can visual patterns be used to prove sums of series?
P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?
This article is based on some of the ideas that emerged during the production of a book which takes visualising as its focus. We began to identify problems which helped us to take a structured view. . . .
Can you see how this picture illustrates the formula for the sum of the first six cube numbers?
The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .
Find the ratio of the outer shaded area to the inner area for a six pointed star and an eight pointed star.
Can you make a tetrahedron whose faces all have the same perimeter?
We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.
A circular plate rolls in contact with the sides of a rectangular tray. How much of its circumference comes into contact with the sides of the tray when it rolls around one circuit?
Place the numbers 1, 2, 3,..., 9 one on each square of a 3 by 3 grid so that all the rows and columns add up to a prime number. How many different solutions can you find?