You may also like

problem icon

Forgotten Number

I have forgotten the number of the combination of the lock on my briefcase. I did have a method for remembering it...

problem icon

Man Food

Sam displays cans in 3 triangular stacks. With the same number he could make one large triangular stack or stack them all in a square based pyramid. How many cans are there how were they arranged?

problem icon

Sam Again

Here is a collection of puzzles about Sam's shop sent in by club members. Perhaps you can make up more puzzles, find formulas or find general methods.

Mystic Rose

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A Mystic Rose is a beautiful image created by joining together points that are equally spaced around a circle.

Watch the animation below to see how a Mystic Rose can be constructed. You can change the number of points around the circle.

This text is usually replaced by the Flash movie.

Can you describe how to construct a Mystic Rose?

Alison and Charlie have been working out how many lines are needed to draw a 10 pointed Mystic Rose.

Alison worked out $9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 45$.

Charlie worked out $\frac{10 \times 9}{2} = 45$

Can you explain how each method relates to the construction of a 10 pointed Mystic Rose?

How would Alison work out the number of lines needed for other Mystic Roses?
How would Charlie work them out?

Whose method do you prefer?

How many lines are needed for a 100 pointed Mystic Rose?

Could there be a Mystic Rose with exactly 4851 lines? Or 6214 lines? Or 3655 lines? Or 7626 lines? Or 8656 lines?

How did you decide?

You may wish to try the problems Picturing Triangle Numbers and Handshakes. Can you see why we chose to publish these three problems together?

You may also be interested in reading the article Clever Carl, the story of a young mathematician who came up with an efficient method for adding lots of consecutive numbers.

Click here for a poster of this problem.