Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

Weekly Problem 25 - 2008

An ordinary die is placed on a horizontal table with the '1' face facing East... In which direction is the '1' face facing after this sequence of moves?

Weekly Problem 12 - 2015

Eight lines are drawn in a regular octagon to form a pattern. What fraction of the octagon is shaded?

Weekly Problem 45 - 2011

What shapes can be made by folding an A4 sheet of paper only once?

Can you describe this route to infinity? Where will the arrows take you next?

Weekly Problem 24 - 2016

What is the smallest number of additional lines that must be shaded so that this figure has at least one line of symmetry and rotational symmetry of order 2?

Weekly Problem 28 - 2007

A 1x2x3 block is placed on an 8x8 board and rolled several times.... How many squares has it occupied altogether?

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

Weekly Problem 27 - 2017

A cube is rolled on a plane, landing on the squares in the order shown. Which two positions had the same face of the cube touching the surface?

Weekly Problem 43 - 2007

The diagram shows 10 identical coins which fit exactly inside a wooden frame. What is the largest number of coins that may be removed so that each remaining coin is still unable to slide.

Weekly Problem 4 - 2014

What is the smallest number of colours needed to paint the faces of a regular octahedron so that no adjacent faces are the same colour?

Weekly Problem 48 - 2017

What is the surface area of the solid shown?

You have 27 small cubes, 3 each of nine colours. Use the small cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of every colour.

Weekly Problem 46 - 2007

When a solid cube is held up to the light, how many of the shapes shown could its shadow have?

A collection of short Stage 3 and 4 problems on Visualising.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Weekly Problem 34 - 2015

Four tiles are given. For which of them can three be placed together to form an equilateral triangle?

What's special about the area of quadrilaterals drawn in a square?

Weekly Problem 3 - 2012

Find out how many pieces of hardboard of differing sizes can fit through a rectangular window.

Weekly Problem 9 - 2016

The diagram to the right shows a logo made from semi-circular arcs. What fraction of the logo is shaded?

Charlie likes to go for walks around a square park, while Alison likes to cut across diagonally. Can you find relationships between the vectors they walk along?

Weekly Problem 52 - 2014

Four arcs are drawn in a circle to create a shaded area. What fraction of the area of the circle is shaded?

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Explore the lattice and vector structure of this crystal.