Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Explore the area of families of parallelograms and triangles. Can you find rules to work out the areas?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

What's the largest volume of box you can make from a square of paper?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

To avoid losing think of another very well known game where the patterns of play are similar.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

What is the total number of squares that can be made on a 5 by 5 geoboard?

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

Can you describe this route to infinity? Where will the arrows take you next?

With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Can you find the values at the vertices when you know the values on the edges?

What is the volume of the solid formed by rotating this right angled triangle about the hypotenuse?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.