This Life lexicon is compiled by Stephen A. Silver from various sources and may be copied, modified and distributed under the terms of the Creative Commons Attribution-ShareAlike 3.0 Unported licence. See the original credit page for all credits and the original download location. The styling has been adjusted to fit this website.
:period multiplier A term commonly used for a pulse divider, because dividing the number of signals in a regular stream by N necessarily multiplies the period by N. The term "period multiplier" can be somewhat misleading in this context, because most such circuits can accept input streams that are not strictly periodic.
Reactions have also been found to period double or period triple the output of some rakes to create high-period rakes in a relatively small space (i.e., an exponential increase in period for a linear increase in size).
For Herschel signals and glider guns, a number of small period doubler, tripler, and quadrupler mechanisms are known. For example, the following conduit produces one output glider after accepting four input B-heptominoes, or four Herschels if a conduit such as F117 is prepended that includes the same BFx59H converter.
See semi-Snark and tremi-Snark for additional examples using glider streams. As of June 2018 no stable period-multiplying elementary conduits are known for a multiplication factor of five or higher, though it is easy to construct composite ones.
The Game of Life is not your typical computer game. It is a cellular automaton, and was invented by Cambridge mathematician John Conway.
This game became widely known when it was mentioned in an article published by Scientific American in 1970. It consists of a collection of cells which, based on a few mathematical rules, can live, die or multiply. Depending on the initial conditions, the cells form various patterns throughout the course of the game.
Each cell with one or no neighbors dies, as if by solitude.
Each cell with four or more neighbors dies, as if by overpopulation.
Each cell with two or three neighbors survives.
Each cell with three neighbors becomes populated.
Choose a pattern from the lexicon or make one yourself by clicking on the cells. The 'Start' button advances the game by several generations (each new generation corresponding to one iteration of the rules).
In the first video, from Stephen Hawkings’ documentary The Meaning of Life, the rules are explained, in the second, John Conway himself talks about the Game of Life.
The Guardian published a nice article about John Conway.
If you’ve been thinking “I’d like to sell my Tesla,” check out FindMyElectric.com—the ultimate Tesla marketplace, and one of Game of Life’s supporters!
The Game of Life is also supported by Dotcom-Tools, Load View Testing, Driven Coffee Roasters, and Web Hosting Buddy.
Implemented by Edwin Martin <edwin@bitstorm.org>