If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

What is the total number of squares that can be made on a 5 by 5 geoboard?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

Explore the area of families of parallelograms and triangles. Can you find rules to work out the areas?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 � 1 [1/3]. What other numbers have the sum equal to the product and can this be so. . . .

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Got It game for an adult and child. How can you play so that you know you will always win?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

It starts quite simple but great opportunities for number discoveries and patterns!

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Can you figure out how sequences of beach huts are generated?

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.