Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

A game for 2 players with similarities to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Make some loops out of regular hexagons. What rules can you discover?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Can you describe this route to infinity? Where will the arrows take you next?

It starts quite simple but great opportunities for number discoveries and patterns!

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you find the values at the vertices when you know the values on the edges?

It would be nice to have a strategy for disentangling any tangled ropes...

Charlie has moved between countries and the average income of both has increased. How can this be so?

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.