When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...
Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...
A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .
Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?
How many moves does it take to swap over some red and blue frogs? Do you have a method?
Try entering different sets of numbers in the number pyramids. How does the total at the top change?
The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.
Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?
Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?
We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4
Can you find sets of sloping lines that enclose a square?
Can all unit fractions be written as the sum of two unit fractions?
Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?
Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?
How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?
Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?
The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.
15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?
Can you find the values at the vertices when you know the values on the edges?
Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?
Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?
Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .
Make some loops out of regular hexagons. What rules can you discover?
A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?
The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .
Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.
Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?
It's easy to work out the areas of most squares that we meet, but what if they were tilted?
Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?
This task encourages you to investigate the number of edging pieces and panes in different sized windows.
In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?
Imagine we have four bags containing numbers from a sequence. What numbers can we make now?
Great Granddad is very proud of his telegram from the Queen congratulating him on his hundredth birthday and he has friends who are even older than he is... When was he born?
Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.
A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .
Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?
What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?
It starts quite simple but great opportunities for number discoveries and patterns!
Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.
An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.
What's the largest volume of box you can make from a square of paper?
If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.
Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?
Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?
Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.
Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?
Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?
Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?
Explore the effect of reflecting in two intersecting mirror lines.