Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

What is the total number of squares that can be made on a 5 by 5 geoboard?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

It would be nice to have a strategy for disentangling any tangled ropes...

Make some loops out of regular hexagons. What rules can you discover?

Can you find the values at the vertices when you know the values on the edges?

Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

Can you find sets of sloping lines that enclose a square?

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Charlie has moved between countries and the average income of both has increased. How can this be so?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

An account of some magic squares and their properties and and how to construct them for yourself.

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

These gnomons appear to have more than a passing connection with the Fibonacci sequence. This problem ask you to investigate some of these connections.

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

How many moves does it take to swap over some red and blue frogs? Do you have a method?