There are **61** NRICH Mathematical resources connected to **Regular polygons and circles**, you may find related items under Angles, Polygons, and Geometrical Proof.

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

What is the same and what is different about these circle questions? What connections can you make?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

By inscribing a circle in a square and then a square in a circle find an approximation to pi. By using a hexagon, can you improve on the approximation?

Explain how the thirteen pieces making up the regular hexagon shown in the diagram can be re-assembled to form three smaller regular hexagons congruent to each other.

Given a square ABCD of sides 10 cm, and using the corners as centres, construct four quadrants with radius 10 cm each inside the square. The four arcs intersect at P, Q, R and S. Find the. . . .

Shogi tiles can form interesting shapes and patterns... I wonder whether they fit together to make a ring?

Take a look at the photos of tiles at a school in Gibraltar. What questions can you ask about them?

Never used GeoGebra before? This article for complete beginners will help you to get started with this free dynamic geometry software.

What shape and size of drinks mat is best for flipping and catching?

Investigate the properties of quadrilaterals which can be drawn with a circle just touching each side and another circle just touching each vertex.

An environment that enables you to investigate tessellations of regular polygons

Two polygons fit together so that the exterior angle at each end of their shared side is 81 degrees. If both shapes now have to be regular could the angle still be 81 degrees?

A cheap and simple toy with lots of mathematics. Can you interpret the images that are produced? Can you predict the pattern that will be produced using different wheels?

Can you reproduce the design comprising a series of concentric circles? Test your understanding of the realtionship betwwn the circumference and diameter of a circle.

Thinking of circles as polygons with an infinite number of sides - but how does this help us with our understanding of the circumference of circle as pi x d? This challenge investigates. . . .

Learn how to draw circles using Logo. Wait a minute! Are they really circles? If not what are they?

This is the second in a twelve part introduction to Logo for beginners. In this part you learn to draw polygons.

Make five different quadrilaterals on a nine-point pegboard, without using the centre peg. Work out the angles in each quadrilateral you make. Now, what other relationships you can see?

This article for pupils gives some examples of how circles have featured in people's lives for centuries.

Read all about the number pi and the mathematicians who have tried to find out its value as accurately as possible.

The sides of a triangle are 25, 39 and 40 units of length. Find the diameter of the circumscribed circle.

Follow instructions to fold sheets of A4 paper into pentagons and assemble them to form a dodecahedron. Calculate the error in the angle of the not perfectly regular pentagons you make.

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

This LOGO challenge starts by looking at 10-sided polygons then generalises the findings to any polygon, putting particular emphasis on external angles

Recreating the designs in this challenge requires you to break a problem down into manageable chunks and use the relationships between triangles and hexagons. An exercise in detail and elegance.

See if you can anticipate successive 'generations' of the two animals shown here.

In LOGO circles can be described in terms of polygons with an infinite (in this case large number) of sides - investigate this definition further.

Can you use LOGO to create this star pattern made from squares. Only basic LOGO knowledge needed.

This article gives an wonderful insight into students working on the Arclets problem that first appeared in the Sept 2002 edition of the NRICH website.

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Bluey-green, white and transparent squares with a few odd bits of shapes around the perimeter. But, how many squares are there of each type in the complete circle? Study the picture and make. . . .

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

Can you find a relationship between the area of the crescents and the area of the triangle?

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

What fractions of the largest circle are the two shaded regions?

The centre of the larger circle is at the midpoint of one side of an equilateral triangle and the circle touches the other two sides of the triangle. A smaller circle touches the larger circle and. . . .

At the corner of the cube circular arcs are drawn and the area enclosed shaded. What fraction of the surface area of the cube is shaded? Try working out the answer without recourse to pencil and. . . .

Medieval stonemasons used a method to construct octagons using ruler and compasses... Is the octagon regular? Proof please.

An equilateral triangle is sitting on top of a square. What is the radius of the circle that circumscribes this shape?

The ten arcs forming the edges of the "holly leaf" are all arcs of circles of radius 1 cm. Find the length of the perimeter of the holly leaf and the area of its surface.

Two semi-circles (each of radius 1/2) touch each other, and a semi-circle of radius 1 touches both of them. Find the radius of the circle which touches all three semi-circles.

Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

A floor is covered by a tessellation of equilateral triangles, each having three equal arcs inside it. What proportion of the area of the tessellation is shaded?

Two circles are enclosed by a rectangle 12 units by x units. The distance between the centres of the two circles is x/3 units. How big is x?