How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?
A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?
Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?
Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?
What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?
The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.
The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?
Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?
Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?
Can you work out how to win this game of Nim? Does it matter if you go first or second?
Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?
This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.
Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?
Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?
We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4
When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...
The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?
What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?
Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?
Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?
Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?
Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.
Try entering different sets of numbers in the number pyramids. How does the total at the top change?
Nim-7 game for an adult and child. Who will be the one to take the last counter?
Can you describe this route to infinity? Where will the arrows take you next?
If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.
Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?
Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .
The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.
An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.
Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.
Can you find sets of sloping lines that enclose a square?
It's easy to work out the areas of most squares that we meet, but what if they were tilted?
Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.
Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.
Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .
It would be nice to have a strategy for disentangling any tangled ropes...
A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.
Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?
Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .
Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.
Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?
You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .
Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?
With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.
It starts quite simple but great opportunities for number discoveries and patterns!
Explore the effect of combining enlargements.