This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Can you explain the strategy for winning this game with any target?

Got It game for an adult and child. How can you play so that you know you will always win?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Can you work out how to win this game of Nim? Does it matter if you go first or second?

To avoid losing think of another very well known game where the patterns of play are similar.

I added together some of my neighbours house numbers. Can you explain the patterns I noticed?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Make some loops out of regular hexagons. What rules can you discover?

Delight your friends with this cunning trick! Can you explain how it works?

Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Great Granddad is very proud of his telegram from the Queen congratulating him on his hundredth birthday and he has friends who are even older than he is... When was he born?

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Can you find sets of sloping lines that enclose a square?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Can you describe this route to infinity? Where will the arrows take you next?

It starts quite simple but great opportunities for number discoveries and patterns!

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.