Can you work out how to win this game of Nim? Does it matter if you go first or second?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Can you explain the strategy for winning this game with any target?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Delight your friends with this cunning trick! Can you explain how it works?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

How many moves does it take to swap over some red and blue frogs? Do you have a method?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Can you find sets of sloping lines that enclose a square?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

It starts quite simple but great opportunities for number discoveries and patterns!

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Can you describe this route to infinity? Where will the arrows take you next?

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

Can all unit fractions be written as the sum of two unit fractions?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

It would be nice to have a strategy for disentangling any tangled ropes...

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?