The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

It would be nice to have a strategy for disentangling any tangled ropes...

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Can all unit fractions be written as the sum of two unit fractions?

I added together some of my neighbours house numbers. Can you explain the patterns I noticed?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Can you explain the strategy for winning this game with any target?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Got It game for an adult and child. How can you play so that you know you will always win?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Can you find sets of sloping lines that enclose a square?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Nim-7 game for an adult and child. Who will be the one to take the last counter?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Can you describe this route to infinity? Where will the arrows take you next?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Make some loops out of regular hexagons. What rules can you discover?

To avoid losing think of another very well known game where the patterns of play are similar.

Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?

Delight your friends with this cunning trick! Can you explain how it works?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.