The clues for this Sudoku are the product of the numbers in adjacent squares.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

How many different symmetrical shapes can you make by shading triangles or squares?

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

You need to find the values of the stars before you can apply normal Sudoku rules.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Different combinations of the weights available allow you to make different totals. Which totals can you make?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

A few extra challenges set by some young NRICH members.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Given the products of adjacent cells, can you complete this Sudoku?

A Sudoku that uses transformations as supporting clues.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Use the differences to find the solution to this Sudoku.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Two sudokus in one. Challenge yourself to make the necessary connections.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Two sudokus in one. Challenge yourself to make the necessary connections.

Use the clues about the shaded areas to help solve this sudoku

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?