Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Can you find a cuboid that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

A Sudoku based on clues that give the differences between adjacent cells.

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Given the products of diagonally opposite cells - can you complete this Sudoku?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

The clues for this Sudoku are the product of the numbers in adjacent squares.

How many different symmetrical shapes can you make by shading triangles or squares?

A Sudoku that uses transformations as supporting clues.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Use the clues about the shaded areas to help solve this sudoku

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Two sudokus in one. Challenge yourself to make the necessary connections.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

You need to find the values of the stars before you can apply normal Sudoku rules.

A pair of Sudoku puzzles that together lead to a complete solution.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Four small numbers give the clue to the contents of the four surrounding cells.

A few extra challenges set by some young NRICH members.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Two sudokus in one. Challenge yourself to make the necessary connections.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

This Sudoku, based on differences. Using the one clue number can you find the solution?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.