A monkey with peaches, keeps a fraction of them each day, gives the rest away, and then eats one. How long can his peaches last?

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Given the products of diagonally opposite cells - can you complete this Sudoku?

Ben, Jack and Emma passed counters to each other and ended with the same number of counters. How many did they start with?

Given the products of adjacent cells, can you complete this Sudoku?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Can you find a cuboid that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

A pair of Sudoku puzzles that together lead to a complete solution.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Four small numbers give the clue to the contents of the four surrounding cells.

Find out about Magic Squares in this article written for students. Why are they magic?!

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

Investigate the different ways that fifteen schools could have given money in a charity fundraiser.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Add or subtract the two numbers on the spinners and try to complete a row of three. Are there some numbers that are good to aim for?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

This Sudoku requires you to do some working backwards before working forwards.

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Replace the letters with numbers to make the addition work out correctly. R E A D + T H I S = P A G E