Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Given the products of diagonally opposite cells - can you complete this Sudoku?

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

A pair of Sudoku puzzles that together lead to a complete solution.

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Find out about Magic Squares in this article written for students. Why are they magic?!

Given the products of adjacent cells, can you complete this Sudoku?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Use the clues about the shaded areas to help solve this sudoku

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

This challenge extends the Plants investigation so now four or more children are involved.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

A challenging activity focusing on finding all possible ways of stacking rods.

You need to find the values of the stars before you can apply normal Sudoku rules.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

Use the differences to find the solution to this Sudoku.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Four small numbers give the clue to the contents of the four surrounding cells.

Different combinations of the weights available allow you to make different totals. Which totals can you make?