You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

You need to find the values of the stars before you can apply normal Sudoku rules.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Replace the letters with numbers to make the addition work out correctly. R E A D + T H I S = P A G E

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Given the products of diagonally opposite cells - can you complete this Sudoku?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

A pair of Sudoku puzzles that together lead to a complete solution.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Use the clues about the shaded areas to help solve this sudoku

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

Solve the equations to identify the clue numbers in this Sudoku problem.

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

This Sudoku requires you to do some working backwards before working forwards.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Two sudokus in one. Challenge yourself to make the necessary connections.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Use the differences to find the solution to this Sudoku.