How many different symmetrical shapes can you make by shading triangles or squares?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Can you find a cuboid that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Add or subtract the two numbers on the spinners and try to complete a row of three. Are there some numbers that are good to aim for?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Given the products of diagonally opposite cells - can you complete this Sudoku?

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

A challenging activity focusing on finding all possible ways of stacking rods.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

A Sudoku that uses transformations as supporting clues.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

You need to find the values of the stars before you can apply normal Sudoku rules.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

A pair of Sudoku puzzles that together lead to a complete solution.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Two sudokus in one. Challenge yourself to make the necessary connections.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Two sudokus in one. Challenge yourself to make the necessary connections.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Use the clues about the shaded areas to help solve this sudoku

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Find out about Magic Squares in this article written for students. Why are they magic?!

A monkey with peaches, keeps a fraction of them each day, gives the rest away, and then eats one. How long can his peaches last?