Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Two sudokus in one. Challenge yourself to make the necessary connections.

A Sudoku based on clues that give the differences between adjacent cells.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

A Sudoku that uses transformations as supporting clues.

Two sudokus in one. Challenge yourself to make the necessary connections.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Solve the equations to identify the clue numbers in this Sudoku problem.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

A pair of Sudoku puzzles that together lead to a complete solution.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Use the clues about the shaded areas to help solve this sudoku

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Four small numbers give the clue to the contents of the four surrounding cells.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

This Sudoku, based on differences. Using the one clue number can you find the solution?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

This Sudoku requires you to do some working backwards before working forwards.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.