A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

The clues for this Sudoku are the product of the numbers in adjacent squares.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Add or subtract the two numbers on the spinners and try to complete a row of three. Are there some numbers that are good to aim for?

A few extra challenges set by some young NRICH members.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

How many different symmetrical shapes can you make by shading triangles or squares?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Two sudokus in one. Challenge yourself to make the necessary connections.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Given the products of diagonally opposite cells - can you complete this Sudoku?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A Sudoku that uses transformations as supporting clues.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Two sudokus in one. Challenge yourself to make the necessary connections.

You need to find the values of the stars before you can apply normal Sudoku rules.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?