This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

This Sudoku requires you to do some working backwards before working forwards.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

A Sudoku that uses transformations as supporting clues.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Four small numbers give the clue to the contents of the four surrounding cells.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Use the clues about the shaded areas to help solve this sudoku

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

A Sudoku with clues given as sums of entries.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

A pair of Sudoku puzzles that together lead to a complete solution.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Two sudokus in one. Challenge yourself to make the necessary connections.

Two sudokus in one. Challenge yourself to make the necessary connections.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Four friends must cross a bridge. How can they all cross it in just 17 minutes?