You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Four small numbers give the clue to the contents of the four surrounding cells.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Use the clues about the shaded areas to help solve this sudoku

Different combinations of the weights available allow you to make different totals. Which totals can you make?

A pair of Sudoku puzzles that together lead to a complete solution.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Find out about Magic Squares in this article written for students. Why are they magic?!

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

You need to find the values of the stars before you can apply normal Sudoku rules.