If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Given the products of adjacent cells, can you complete this Sudoku?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

You need to find the values of the stars before you can apply normal Sudoku rules.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

A few extra challenges set by some young NRICH members.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

A challenging activity focusing on finding all possible ways of stacking rods.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

This challenge extends the Plants investigation so now four or more children are involved.

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?