What's Possible?
Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?
Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?
Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.
Can you produce convincing arguments that a selection of statements about numbers are true?
Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?
Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.
The sums of the squares of three related numbers is also a perfect square - can you explain why?
Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?
Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?