Creating and manipulating expressions and formulae

  • The medieval octagon
    problem

    The medieval octagon

    Age
    14 to 16
    Challenge level
    filled star filled star empty star
    Medieval stonemasons used a method to construct octagons using ruler and compasses... Is the octagon regular? Proof please.
  • Never Prime
    problem

    Never prime

    Age
    14 to 16
    Challenge level
    filled star filled star empty star
    If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.
  • Seven Up
    problem

    Seven up

    Age
    11 to 14
    Challenge level
    filled star filled star filled star
    The number 27 is special because it is three times the sum of its digits 27 = 3 (2 + 7). Find some two digit numbers that are SEVEN times the sum of their digits (seven-up numbers)?
  • Special Sums and Products
    problem

    Special sums and products

    Age
    11 to 14
    Challenge level
    filled star filled star filled star
    Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.
  • Sum Equals Product
    problem

    Sum equals product

    Age
    11 to 14
    Challenge level
    filled star filled star empty star
    The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 � 1 [1/3]. What other numbers have the sum equal to the product and can this be so for any whole numbers?
  • Three four five
    problem

    Three four five

    Age
    14 to 16
    Challenge level
    filled star filled star empty star
    Two semi-circles (each of radius 1/2) touch each other, and a semi-circle of radius 1 touches both of them. Find the radius of the circle which touches all three semi-circles.
  • Sitting Pretty
    problem

    Sitting pretty

    Age
    14 to 16
    Challenge level
    filled star filled star empty star

    A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

  • Unit Interval
    problem

    Unit interval

    Age
    14 to 18
    Challenge level
    filled star empty star empty star
    Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?
  • Hike and Hitch
    problem

    Hike and hitch

    Age
    14 to 16
    Challenge level
    filled star filled star filled star
    Fifteen students had to travel 60 miles. They could use a car, which could only carry 5 students. As the car left with the first 5 (at 40 miles per hour), the remaining 10 commenced hiking along the road (at 4 miles per hour)...
  • Plus Minus
    problem

    Plus minus

    Age
    14 to 16
    Challenge level
    filled star filled star empty star
    Can you explain the surprising results Jo found when she calculated the difference between square numbers?