Build a scaffold out of drinking-straws to support a cup of water

This article for pupils gives an introduction to Celtic knotwork patterns and a feel for how you can draw them.

This article for students gives some instructions about how to make some different braids.

Design and construct a prototype intercooler which will satisfy agreed quality control constraints.

What shape would fit your pens and pencils best? How can you make it?

How does the time of dawn and dusk vary? What about the Moon, how does that change from night to night? Is the Sun always the same? Gather data to help you explore these questions.

You could use just coloured pencils and paper to create this design, but it will be more eye-catching if you can get hold of hammer, nails and string.

As part of Liverpool08 European Capital of Culture there were a huge number of events and displays. One of the art installations was called "Turning the Place Over". Can you find our how it works?

Make some celtic knot patterns using tiling techniques

Exploring balance and centres of mass can be great fun. The resulting structures can seem impossible. Here are some images to encourage you to experiment with non-breakable objects of your own.

Galileo, a famous inventor who lived about 400 years ago, came up with an idea similar to this for making a time measuring instrument. Can you turn your pendulum into an accurate minute timer?

Can Jo make a gym bag for her trainers from the piece of fabric she has?

What shape and size of drinks mat is best for flipping and catching?

More Logo for beginners. Now learn more about the REPEAT command.

What shapes should Elly cut out to make a witch's hat? How can she make a taller hat?

This is the second in a twelve part introduction to Logo for beginners. In this part you learn to draw polygons.

Learn about Pen Up and Pen Down in Logo

It might seem impossible but it is possible. How can you cut a playing card to make a hole big enough to walk through?

In this article for teachers, Bernard uses some problems to suggest that once a numerical pattern has been spotted from a practical starting point, going back to the practical can help explain. . . .

How many differently shaped rectangles can you build using these equilateral and isosceles triangles? Can you make a square?

This part introduces the use of Logo for number work. Learn how to use Logo to generate sequences of numbers.

Learn to write procedures and build them into Logo programs. Learn to use variables.

Learn how to draw circles using Logo. Wait a minute! Are they really circles? If not what are they?

These models have appeared around the Centre for Mathematical Sciences. Perhaps you would like to try to make some similar models of your own.

Can you use small coloured cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of each colour?

Use the tangram pieces to make our pictures, or to design some of your own!

Interior angles can help us to work out which polygons will tessellate. Can we use similar ideas to predict which polygons combine to create semi-regular solids?

Generate three random numbers to determine the side lengths of a triangle. What triangles can you draw?

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Here is a chance to create some Celtic knots and explore the mathematics behind them.

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

Turn through bigger angles and draw stars with Logo.

What happens when a procedure calls itself?

Write a Logo program, putting in variables, and see the effect when you change the variables.

You can use a clinometer to measure the height of tall things that you can't possibly reach to the top of, Make a clinometer and use it to help you estimate the heights of tall objects.

Draw whirling squares and see how Fibonacci sequences and golden rectangles are connected.

Delight your friends with this cunning trick! Can you explain how it works?

A jigsaw where pieces only go together if the fractions are equivalent.

A game in which players take it in turns to choose a number. Can you block your opponent?

I start with a red, a blue, a green and a yellow marble. I can trade any of my marbles for three others, one of each colour. Can I end up with exactly two marbles of each colour?

Which of the following cubes can be made from these nets?

How can you make an angle of 60 degrees by folding a sheet of paper twice?

Make an equilateral triangle by folding paper and use it to make patterns of your own.

A game to make and play based on the number line.

Can you puzzle out what sequences these Logo programs will give? Then write your own Logo programs to generate sequences.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.