Equal circles can be arranged so that each circle touches four or
six others. What percentage of the plane is covered by circles in
each packing pattern? ...
Take any rectangle ABCD such that AB > BC. The point P is on AB
and Q is on CD. Show that there is exactly one position of P and Q
such that APCQ is a rhombus.
Equal touching circles have centres on a line. From a point of this
line on a circle, a tangent is drawn to the farthest circle. Find
the lengths of chords where the line cuts the other circles.
The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF.
Similarly the largest equilateral triangle which fits into a circle is LMN and PQR is an equilateral triangle with P and Q on the line LM and R on the circumference of the circle. Show that LM = 3PQ
Prove that a triangle with sides of length 5, 5 and 6 has the same area as a triangle with sides of length 5, 5 and 8. Find other pairs of non-congruent isosceles triangles which have equal areas.
A tetrahedron has two identical equilateral triangles faces, of side length 1 unit. The other two faces are right angled isosceles triangles. Find the exact volume of the tetrahedron.
ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP
: PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED.
What is the area of the triangle PQR?