Pythagoras' theorem
problem
Fitting in
The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF.
Similarly the largest equilateral triangle which fits into a circle is LMN and PQR is an equilateral triangle with P and Q on the line LM and R on the circumference of the circle. Show that LM = 3PQ
problem
Isosceles
Prove that a triangle with sides of length 5, 5 and 6 has the same area as a triangle with sides of length 5, 5 and 8. Find other pairs of non-congruent isosceles triangles which have equal areas.
problem
Reach for polydron
A tetrahedron has two identical equilateral triangles faces, of side length 1 unit. The other two faces are right angled isosceles triangles. Find the exact volume of the tetrahedron.
problem
Trice
ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP
: PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED.
What is the area of the triangle PQR?
problem
Pythagoras mod 5
Prove that for every right angled triangle which has sides with
integer lengths: (1) the area of the triangle is even and (2) the
length of one of the sides is divisible by 5.
problem
Golden construction
Draw a square and an arc of a circle and construct the Golden
rectangle. Find the value of the Golden Ratio.