A small circle fits between two touching circles so that all three
circles touch each other and have a common tangent? What is the
exact radius of the smallest circle?
The incircles of 3, 4, 5 and of 5, 12, 13 right angled triangles
have radii 1 and 2 units respectively. What about triangles with an
inradius of 3, 4 or 5 or ...?
The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF.
Similarly the largest equilateral triangle which fits into a circle is LMN and PQR is an equilateral triangle with P and Q on the line LM and R on the circumference of the circle. Show that LM = 3PQ
A tetrahedron has two identical equilateral triangles faces, of side length 1 unit. The other two faces are right angled isosceles triangles. Find the exact volume of the tetrahedron.
The diagram shows a very heavy kitchen cabinet. It cannot be lifted but it can be pivoted around a corner. The task is to move it, without sliding, in a series of turns about the corners so that it is facing the other way round.
Explain how the thirteen pieces making up the regular hexagon shown
in the diagram can be re-assembled to form three smaller regular
hexagons congruent to each other.