A floor is covered by a tessellation of equilateral triangles, each having three equal arcs inside it. What proportion of the area of the tessellation is shaded?
Two semi-circles (each of radius 1/2) touch each other, and a semi-circle of radius 1 touches both of them. Find the radius of the circle which touches all three semi-circles.
The ten arcs forming the edges of the "holly leaf" are all arcs of
circles of radius 1 cm. Find the length of the perimeter of the
holly leaf and the area of its surface.
A right-angled isosceles triangle is rotated about the centre point
of a square. What can you say about the area of the part of the
square covered by the triangle as it rotates?
It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?