Networks/graph theory

  • Cube Net
    problem

    Cube net

    Age
    16 to 18
    Challenge level
    filled star filled star empty star
    How many tours visit each vertex of a cube once and only once? How many return to the starting point?
  • The Bridges of Konigsberg
    problem

    The bridges of Konigsberg

    Age
    11 to 18
    Challenge level
    filled star empty star empty star

    Investigate how networks can be used to solve a problem for the 18th Century inhabitants of Konigsberg.

  • Tourism
    problem

    Tourism

    Age
    11 to 14
    Challenge level
    filled star filled star filled star

    If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

  • Travelling Salesman
    problem

    Travelling salesman

    Age
    11 to 14
    Challenge level
    filled star empty star empty star
    A Hamiltonian circuit is a continuous path in a graph that passes through each of the vertices exactly once and returns to the start. How many Hamiltonian circuits can you find in these graphs?
  • Hamilton's Puzzle
    problem

    Hamilton's puzzle

    Age
    7 to 11
    Challenge level
    filled star filled star filled star
    I start my journey in Rio de Janeiro and visit all the cities as Hamilton described, passing through Canberra before Madrid, and then returning to Rio. What route could I have taken?
  • Königsberg
    problem

    Königsberg

    Age
    11 to 14
    Challenge level
    filled star filled star empty star

    Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

  • Magic W Wrap Up
    problem

    Magic W wrap up

    Age
    16 to 18
    Challenge level
    filled star empty star empty star

    Prove that you cannot form a Magic W with a total of 12 or less or with a with a total of 18 or more.

  • Networks and Nodes
    problem

    Networks and nodes

    Age
    7 to 11
    Challenge level
    filled star filled star empty star
    Without taking your pencil off the paper or going over a line or passing through one of the points twice, can you follow each of the networks?
  • Only connect
    problem

    Only connect

    Age
    11 to 14
    Challenge level
    filled star empty star empty star
    The graph represents a salesman’s area of activity with the shops that the salesman must visit each day. What route around the shops has the minimum total distance?