Inequalities

  • Shades of Fermat's Last Theorem
    problem

    Shades of Fermat's Last Theorem

    Age
    16 to 18
    Challenge level
    filled star empty star empty star

    The familiar Pythagorean 3-4-5 triple gives one solution to (x-1)^n + x^n = (x+1)^n so what about other solutions for x an integer and n= 2, 3, 4 or 5?

  • Two Cubes
    problem

    Two cubes

    Age
    14 to 16
    Challenge level
    filled star empty star empty star
    Two cubes, each with integral side lengths, have a combined volume equal to the total of the lengths of their edges. How big are the cubes? [If you find a result by 'trial and error' you'll need to prove you have found all possible solutions.]
  • Code to Zero
    problem

    Code to zero

    Age
    16 to 18
    Challenge level
    filled star empty star empty star
    Find all 3 digit numbers such that by adding the first digit, the square of the second and the cube of the third you get the original number, for example 1 + 3^2 + 5^3 = 135.
  • Without Calculus
    problem

    Without calculus

    Age
    16 to 18
    Challenge level
    filled star empty star empty star
    Given that u>0 and v>0 find the smallest possible value of 1/u + 1/v given that u + v = 5 by different methods.
  • Reciprocals
    problem

    Reciprocals

    Age
    16 to 18
    Challenge level
    filled star empty star empty star
    Prove that the product of the sum of n positive numbers with the sum of their reciprocals is not less than n^2.
  • Diverging
    problem

    Diverging

    Age
    16 to 18
    Challenge level
    filled star empty star empty star
    Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.
  • Quadratic Harmony
    problem

    Quadratic harmony

    Age
    16 to 18
    Challenge level
    filled star empty star empty star
    Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.
  • Unit Interval
    problem

    Unit interval

    Age
    14 to 18
    Challenge level
    filled star empty star empty star
    Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?
  • Climbing
    problem

    Climbing

    Age
    16 to 18
    Challenge level
    filled star empty star empty star
    Sketch the graphs of y = sin x and y = tan x and some straight lines. Prove some inequalities.