Find all 3 digit numbers such that by adding the first digit, the
square of the second and the cube of the third you get the original
number, for example 1 + 3^2 + 5^3 = 135.
According to Plutarch, the Greeks found all the rectangles with
integer sides, whose areas are equal to their perimeters. Can you
find them? What rectangular boxes, with integer sides, have their
surface areas equal to their volumes?