Creating and manipulating expressions and formulae

  • Sixational
    problem

    Sixational

    Age
    14 to 18
    Challenge level
    filled star filled star empty star
    The nth term of a sequence is given by the formula n^3 + 11n. Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. Prove that all terms of the sequence are divisible by 6.
  • Three Ways
    problem

    Three ways

    Age
    16 to 18
    Challenge level
    filled star empty star empty star
    If x + y = -1 find the largest value of xy by coordinate geometry, by calculus and by algebra.
  • DOTS Division
    problem

    DOTS division

    Age
    14 to 16
    Challenge level
    filled star filled star filled star

    Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

  • Diophantine n-tuples
    problem

    Diophantine n-tuples

    Age
    14 to 16
    Challenge level
    filled star filled star filled star
    Can you explain why a sequence of operations always gives you perfect squares?
  • Binomial
    problem

    Binomial

    Age
    16 to 18
    Challenge level
    filled star filled star empty star
    By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn
  • More Polynomial Equations
    problem

    More polynomial equations

    Age
    16 to 18
    Challenge level
    filled star filled star empty star
    Find relationships between the polynomials a, b and c which are polynomials in n giving the sums of the first n natural numbers, squares and cubes respectively.
  • How Many Solutions?
    problem

    How many solutions?

    Age
    16 to 18
    Challenge level
    filled star empty star empty star
    Find all the solutions to the this equation.
  • Polynomial Relations
    problem

    Polynomial relations

    Age
    16 to 18
    Challenge level
    filled star empty star empty star
    Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.
  • Incircles
    problem

    Incircles

    Age
    16 to 18
    Challenge level
    filled star empty star empty star
    The incircles of 3, 4, 5 and of 5, 12, 13 right angled triangles have radii 1 and 2 units respectively. What about triangles with an inradius of 3, 4 or 5 or ...?
  • Ball Bearings
    problem

    Ball bearings

    Age
    16 to 18
    Challenge level
    filled star filled star empty star
    If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.