Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board. . . .

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

Prove that you cannot form a Magic W with a total of 12 or less or with a with a total of 18 or more.

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

How many tours visit each vertex of a cube once and only once? How many return to the starting point?

Starting with one of the mini-challenges, how many of the other mini-challenges will you invent for yourself?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Sort these mathematical propositions into a series of 8 correct statements.

How many noughts are at the end of these giant numbers?

Have a go at being mathematically negative, by negating these statements.

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

What is the largest number of intersection points that a triangle and a quadrilateral can have?

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

This is the second article on right-angled triangles whose edge lengths are whole numbers.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Can you work through these direct proofs, using our interactive proof sorters?

When is it impossible to make number sandwiches?

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?