Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Can you explain why a sequence of operations always gives you perfect squares?

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

Kyle and his teacher disagree about his test score - who is right?

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

What is the largest number of intersection points that a triangle and a quadrilateral can have?

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Can you rearrange the cards to make a series of correct mathematical statements?

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

This is the second of two articles and discusses problems relating to the curvature of space, shortest distances on surfaces, triangulations of surfaces and representation by graphs.

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Can you find the areas of the trapezia in this sequence?

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

Four jewellers share their stock. Can you work out the relative values of their gems?

If you think that mathematical proof is really clearcut and universal then you should read this article.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

When is it impossible to make number sandwiches?

Take a triangular number, multiply it by 8 and add 1. What is special about your answer? Can you prove it?

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

Prove that the internal angle bisectors of a triangle will never be perpendicular to each other.

Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?