A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .
Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?
Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?
When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...
Here are three 'tricks' to amaze your friends. But the really clever trick is explaining to them why these 'tricks' are maths not magic. Like all good magicians, you should practice by trying. . . .
Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .
The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.
Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.
Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .
In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.
Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.
Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.
You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .
Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?
In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?
Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?
Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .
Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .
The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .
Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?
Imagine we have four bags containing numbers from a sequence. What numbers can we make now?
If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.
Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?
How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?
Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?
Can you see how this picture illustrates the formula for the sum of the first six cube numbers?
Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?
Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .
Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?
Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .
Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.
Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?
Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?
Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.
A huge wheel is rolling past your window. What do you see?
I am exactly n times my daughter's age. In m years I shall be ... How old am I?
The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .
Four jewellers share their stock. Can you work out the relative values of their gems?
Kyle and his teacher disagree about his test score - who is right?
You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?
Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.
Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.
What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.
Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.
The sums of the squares of three related numbers is also a perfect square - can you explain why?
There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?
Show that among the interior angles of a convex polygon there cannot be more than three acute angles.