Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Use the information to work out how many gifts there are in each pile.

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

This task offers an opportunity to explore all sorts of number relationships, but particularly multiplication.

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Find the next number in this pattern: 3, 7, 19, 55 ...

Four Go game for an adult and child. Will you be the first to have four numbers in a row on the number line?

In this article for primary teachers, Lynne McClure outlines what is meant by fluency in the context of number and explains how our selection of NRICH tasks can help.

This article for primary teachers encourages exploration of two fundamental ideas, exchange and 'unitising', which will help children become more fluent when calculating.

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Number problems at primary level that require careful consideration.

Number problems at primary level that may require resilience.

This number has 903 digits. What is the sum of all 903 digits?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Find another number that is one short of a square number and when you double it and add 1, the result is also a square number.

Put a number at the top of the machine and collect a number at the bottom. What do you get? Which numbers get back to themselves?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.