Skip to main content
### Number and algebra

### Geometry and measure

### Probability and statistics

### Working mathematically

### For younger learners

### Advanced mathematics

# Route Product

There are lots of different routes from $A$ to $B$ in this diagram:

The idea is to work out the product of the numbers on these different routes from $A$ to $B$. Let's say that in a route you are not allowed to visit a point more than once.

For example, we could have $3\times0.5$ but we couldn't have $3\times2\times5\times4\times1\times 0.1$ because that route passes through $A$ twice.

Or search by topic

Age 7 to 11

Challenge Level

There are lots of different routes from $A$ to $B$ in this diagram:

The idea is to work out the product of the numbers on these different routes from $A$ to $B$. Let's say that in a route you are not allowed to visit a point more than once.

For example, we could have $3\times0.5$ but we couldn't have $3\times2\times5\times4\times1\times 0.1$ because that route passes through $A$ twice.

Which route or routes give the largest product?

Which route or routes give the smallest product?

Do you have any quick ways of working out the products each time?

[This problem is adapted from a SMILE Centre card.]