This challenge combines addition, multiplication, perseverance and even proof.

This task combines spatial awareness with addition and multiplication.

Can you find different ways of creating paths using these paving slabs?

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?

Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

This task offers an opportunity to explore all sorts of number relationships, but particularly multiplication.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Use the information to work out how many gifts there are in each pile.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Number problems at primary level that require careful consideration.

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

Find the next number in this pattern: 3, 7, 19, 55 ...

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

Number problems at primary level that may require resilience.

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

This number has 903 digits. What is the sum of all 903 digits?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?