Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Ding Dong Bell Interactive:

Filter by: Content type:
Age range:
Challenge level:

There are 185 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

Proof Sorter - Sum of an AP

Age 16 to 18 Challenge Level:

Use this interactivity to sort out the steps of the proof of the formula for the sum of an arithmetic series. The 'thermometer' will tell you how you are doing

problem icon

A Computer Program to Find Magic Squares

Age 16 to 18

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

problem icon

The Triangle Game

Age 11 to 16 Challenge Level:

Can you discover whether this is a fair game?

problem icon

Sprouts Explained

Age 7 to 18

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

problem icon

Middle Man

Age 16 to 18 Challenge Level:

Mark a point P inside a closed curve. Is it always possible to find two points that lie on the curve, such that P is the mid point of the line joining these two points?

problem icon

Direct Logic

Age 16 to 18 Challenge Level:

Can you work through these direct proofs, using our interactive proof sorters?

problem icon

Proof Sorter - Quadratic Equation

Age 14 to 18 Challenge Level:

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

problem icon

Matter of Scale

Age 14 to 16 Challenge Level:

Prove Pythagoras' Theorem using enlargements and scale factors.

problem icon

Proofs with Pictures

Age 14 to 18

Some diagrammatic 'proofs' of algebraic identities and inequalities.

problem icon

Picture Story

Age 11 to 16 Challenge Level:

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

problem icon

Yih or Luk Tsut K'i or Three Men's Morris

Age 11 to 18 Challenge Level:

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

problem icon

Proof Sorter - Geometric Series

Age 16 to 18 Challenge Level:

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

problem icon

The Frieze Tree

Age 11 to 16

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

problem icon

Continued Fractions II

Age 16 to 18

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

problem icon

Euclid's Algorithm II

Age 16 to 18

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

problem icon

Modulus Arithmetic and a Solution to Dirisibly Yours

Age 16 to 18

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

problem icon

More Sums of Squares

Age 16 to 18

Tom writes about expressing numbers as the sums of three squares.

problem icon

Modulus Arithmetic and a Solution to Differences

Age 16 to 18

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

problem icon

Sums of Squares and Sums of Cubes

Age 16 to 18

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

problem icon

Transitivity

Age 16 to 18

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

problem icon

Impossible Sandwiches

Age 11 to 18

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

problem icon

Fractional Calculus III

Age 16 to 18

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

problem icon

Mouhefanggai

Age 14 to 16

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

problem icon

Mediant Madness

Age 14 to 16 Challenge Level:

Kyle and his teacher disagree about his test score - who is right?

problem icon

Square Pair Circles

Age 16 to 18 Challenge Level:

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

problem icon

Same Length

Age 11 to 16 Challenge Level:

Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?

problem icon

Calculating with Cosines

Age 14 to 18 Challenge Level:

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

problem icon

More Number Sandwiches

Age 11 to 16 Challenge Level:

When is it impossible to make number sandwiches?

problem icon

Particularly General

Age 16 to 18 Challenge Level:

By proving these particular identities, prove the existence of general cases.

problem icon

Euler's Formula and Topology

Age 16 to 18

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

problem icon

Recent Developments on S.P. Numbers

Age 16 to 18

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

problem icon

Magic Squares II

Age 14 to 18

An article which gives an account of some properties of magic squares.

problem icon

Can it Be

Age 16 to 18 Challenge Level:

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

problem icon

Whole Number Dynamics I

Age 14 to 18

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

problem icon

Whole Number Dynamics II

Age 14 to 18

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

problem icon

Pythagorean Triples II

Age 11 to 16

This is the second article on right-angled triangles whose edge lengths are whole numbers.

problem icon

Proof of Pick's Theorem

Age 16 to 18 Challenge Level:

Follow the hints and prove Pick's Theorem.

problem icon

Angle Trisection

Age 14 to 16 Challenge Level:

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

problem icon

Little and Large

Age 16 to 18 Challenge Level:

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

problem icon

Pythagorean Triples I

Age 11 to 16

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

problem icon

Whole Number Dynamics III

Age 14 to 18

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

problem icon

A Knight's Journey

Age 14 to 18

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

problem icon

Try to Win

Age 16 to 18

Solve this famous unsolved problem and win a prize. Take a positive integer N. If even, divide by 2; if odd, multiply by 3 and add 1. Iterate. Prove that the sequence always goes to 4,2,1,4,2,1...

problem icon

Triangular Intersection

Age 14 to 16 Short Challenge Level:

What is the largest number of intersection points that a triangle and a quadrilateral can have?

problem icon

Picturing Pythagorean Triples

Age 14 to 18

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

problem icon

Where Do We Get Our Feet Wet?

Age 16 to 18

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

problem icon

Telescoping Functions

Age 16 to 18

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

problem icon

Whole Number Dynamics IV

Age 14 to 18

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

problem icon

Whole Number Dynamics V

Age 14 to 18

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

problem icon

Similarly So

Age 14 to 16 Challenge Level:

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.